A Proof of the Hodge Conjecture

Kazuhisa MAEHARA*

Nov.14, 2006

1 Introduction

In this paper we show that the Hodge conjecture and a part of the Tate conjecture hold. Since it is difficult to find algebraic cycles in general, the strategy is to proceed by induction argument to vanish a certain subspace of a cohomology of an open affine subvariety of an affine variety which is obtained excluding a general hyperplane from a given variety.

2 In Case of Non Singular Varieties

Let \(k \) be a field with an algebraic closure \(\bar{k} \) and \(X \) a smooth geometrically irreducible variety over \(k \). There exists the canonical cycle map for \(\ell \neq \text{char} \ k \)

\[
cl_\ell^r : CH^r(X) \rightarrow H^{2r}_{\text{et}}(X_k, \mathbb{Q}_\ell(r))
\]

This image is included in the fixed part

\[
H^{2r}_{\text{et}}(X_k, \mathbb{Q}_\ell(r))^{G_k}
\]

where \(G_k = \text{Gal}(\bar{k}/k) \). Tate's conjecture says that if \(k \) is finitely generated as a field, the image of \(cl_\ell^r \) generates \(H^{2r}_{\text{et}}(X_k, \mathbb{Q}_\ell(r))^{G_k} \). Fix an isomorphism \(\iota : \mathbb{Q}_\ell \rightarrow \mathbb{C} \).

Let \(k = \mathbb{C} \). One has the canonical cycle map

\[
cl^r : CH^r(X) \rightarrow H^{2r}(X(\mathbb{C}), \mathbb{Q}(2\pi i)^r)
\]

This image is included into

\[
H^{2r}(X(\mathbb{C}), \mathbb{Q}(2\pi i)^r) \cap H^r(\mathbb{C})
\]

*Associate Professor, General Education and Research Center, Tokyo Polytechnic University
Received Sept. 28, 2006
Hodge conjecture says that the image of cl^r generates $H^{2r}(X(C), Q(2\pi i)^r) \cap H^{r\cdot r}(X(C))$. Let U be a smooth quasiprojective variety over k. The images of the canonical cycle maps are

$$\begin{cases} H^{2r}_d(U_k, Q(r))^{G_k} & \text{for finitely generated } k \\ F^r H^{2r}(U, C) \cap W_{2r} H^{2r}(U, Q(r)) & \text{for } k = C \end{cases}$$

Let U be a smooth quasi-projective variety over k and X a smooth projective compactification of U. One denotes by cl^* the following cycle maps cl_{DR}, cl_ℓ, cl_H;

(a) $\Gamma_{DR}(H^{2r}_{DR}(U)(r)) = W_0(H^{2r}_{DR}(U)(r)) \cap F^0(H^{2r}_{DR}(U)(r))$

(b) $\Gamma_{\ell}(H^{2r}_{\ell}(U)(r)) = H^{2r}_{\ell}(U)(r)^{G_k} \cap W_0(H^{2r}_{\ell}(U)(r))$

(c) $\Gamma_{H}(H^{2r}_H(U)(r)) = W_0(H^{2r}_H(U)(r)) \cap F^0(H^{2r}_H(U)(r)) \otimes C$

Lemma 1 It suffices to prove it for a smooth affine variety over k.

Proof. It is well known that it is enough to treat it in the case of $\dim X = 2d$. Choose a smooth irreducible hyperplane Y on X. Thus $X - Y$ is a smooth affine variety. One obtains the following commutative diagram:

$\begin{array}{ccc}
\text{CH}^{d-1}(Y) & \longrightarrow & \Gamma_* H^{2d}_{s,Y}(X)(d) \\
\downarrow & & \downarrow \\
\text{CH}^{d}(X) & \longrightarrow & \Gamma_* H^{2d}(X)(d) \\
\downarrow & & \downarrow \\
\text{CH}^{d}(X - Y) & \longrightarrow & \Gamma_* H^{2d}(X - Y)(d) \\
\downarrow & & \downarrow \\
0 & & 0
\end{array}$

Here the vertical sequences are exact. By duality, one has $H^{2d}_{s,Y}(X)(d) \cong H^{2d-2}(Y)(d - 1)$. Assume conjectures hold for $X - Y$. Induction hypothesis for $\text{CH}^d(Y) \longrightarrow \Gamma_* H^{2d-2}(Y)(d - 1)$ implies conjectures.

Lemma 2 The action of G on M keeps B to be invariant.
Proof. Since A is regular; hence normal, A coincides with the integral closure of $k[x_1, \cdots, x_{2d}]$ in L. Let $a \in A$ with the minimal polynomial hand let $\sigma \in G$. Then $h^\sigma = h$. Take any $b \in B$, which satisfies the minimal polynomial $g(b) = 0$ with coefficients in A. Thus g^σ has its coefficients in A. Hence $g^\sigma(b^\sigma) = 0$, which implies b is an integral element of M. Therefore $b^\sigma \in B$. ■

Let K' be the field of the invariants of M by G and C the integral closure of $k[x_1, \cdots, x_{2d}]$. Note that K' is a radical extension of K of finite degree.

Lemma 3 (i) $B^G = C$

(ii) $\text{Spec } C \to \text{Spec } k[x_1, \cdots, x_{2d}]$ is a finite, surjective and radical morphism, which is a universal homeomorphism.

Proof. Since $M \supset B \supset A \supset C \supset k[x_1, \cdots, x_{2d}]$, one has $K' = M^G \supset B^G \supset A^G \supset C^G = C$. Since B is a finite $k[x_1, \cdots, x_{2d}]$ module and $k[x_1, \cdots, x_{2d}]$ is a Noetherian ring, every submodule of B is a finite $k[x_1, \cdots, x_{2d}]$ module. Every element of B^G is integral over C. Hence $B^G = C$ since C is integrally closed. $\phi : \text{Spec } C \to \text{Spec } k[x_1, \cdots, x_{2d}]$ For every point x of $\text{Spec } C$ one has $\kappa(x)$ is a radical extension of $\kappa(x)$; thus $\phi : \text{Spec } C \to \text{Spec } k[x_1, \cdots, x_{2d}]$ is a radical morphism. It is clear that the morphism is finite and surjective; hence a universal homeomorphism. ■

Let \mathcal{F} be a suitable smooth sheaf on X. One has a trace map: $\text{tr}_{L/K'} : L \to K'$, which naturally extends to a map $\text{tr}_{A/C} : A \to C$. If $f \in C$, one further has a map $\text{tr}_{A[1/\mathcal{F}]/C[1/\mathcal{F}]} : A[1/\mathcal{F}] \to C[1/\mathcal{F}]$ and a cohomological map

$$\text{tr}_{A[1/\mathcal{F}]/C[1/\mathcal{F}]} : H^i \left(\text{Spec } A[1/\mathcal{F}], \mathcal{F} \right) \to H^i \left(\text{Spec } C[1/\mathcal{F}], \mathcal{F} \right).$$

If $f \in k[x_1, \cdots, x_{2d}]$, $\phi : \text{Spec } C[1/\mathcal{F}] \to \text{Spec } k[x_1, \cdots, x_{2d}, 1/\mathcal{F}]$ is a finite, surjective and radical morphism; hence a universal homeomorphism. Thus one has an isomorphism

$$H^i \left(\text{Spec } C[1/\mathcal{F}], \mathcal{F} \right) \to H^i \left(\text{Spec } k[x_1, \cdots, x_{2d}, 1/\mathcal{F}], \mathcal{F} \right).$$

Let $H = \text{Gal}(M/L)$.

Lemma 4 Assume that $\dim \text{Spec } A = n = 2d \geq 4$. Let f_1, \cdots, f_n be k-linear combinations of x_1, \cdots, x_n in $k[x_1, \cdots, x_n]$. Assume that the intersection locus $V(f_1, \cdots, f_n)$ is void in $\text{Spec } k[x_1, \cdots, x_n]$, i.e., the hyperplanes intersect one point in infinity. One obtains $\Gamma_x, H^n \left(\text{Spec } A[1/\mathcal{F}], \mathcal{F} \right) = 0$.

Proof. If $n > 2$, by the affine vanishing theorem, one has $H^{2n-1} \left(\text{Spec } A, \mathcal{F} \right) = 0, H^{2n-2} \left(\text{Spec } A, \mathcal{F} \right) = 0.$
One has a Čech Spectral sequence:

\[E_1^{p,q} = \oplus_{|I|=p+1} H^q \left(\cap_{i \in I} \text{Spec } A[\frac{1}{f_i}], \mathcal{F} \right) \to H^{p+q} \left(\text{Spec } A - V(f_1, \ldots, f_n), \mathcal{F} \right). \]

Note that \(E_1^{pq} = 0 \) for \(q > n \) by affine vanishing theorem and that \(p > n - 1 \) by Čech cohomology theory. One obtains

\[E_{\infty}^{n-1,n} = H^{2n-1} \left(\text{Spec } A - V(f_1, \ldots, f_n), \mathcal{F} \right) = 0, \]

\[E_2^{n-2,n} = E_{\infty}^{n-2,n} = Gr^{n-2}H^{2n-2}((\text{Spec } A, \mathcal{F}) = 0, \]

since \(E_2^{n-4,n+1} = E_2^{n-1,n-1} = 0 \). Note that there exists the following exact sequence:

\[\Gamma_* H_2^{d-2}(V(f_i), \mathcal{F})(d-1) \rightarrow \Gamma_* H_2^{2d}(\text{Spec } A[\frac{1}{f_1 \cdots f_k}], \mathcal{F})(d) \rightarrow \Gamma_* H_2^{2d}(\text{Spec } A[\frac{1}{f_1 \cdots f_k}], \mathcal{F})(d) \rightarrow 0. \]

Thus,

\[\oplus_{|I| = n-2} \Gamma_* H^n \left(\text{Spec } A[\frac{1}{f_1 \cdots f_k}], \mathcal{F} \right) \to \oplus_{|I| = n-1} \Gamma_* H^n \left(\text{Spec } A[\frac{1}{f_1 \cdots f_k}], \mathcal{F} \right) \]

and

\[\oplus_{|I| = n-1} \Gamma_* H^n \left(\text{Spec } A[\frac{1}{f_1 \cdots f_k}], \mathcal{F} \right) \to \oplus_{|I| = n} \Gamma_* H^n \left(\text{Spec } A[\frac{1}{f_1 \cdots f_k}], \mathcal{F} \right) \]

are surjections, respectively. Using \(E_2^{n-3,n+1} = E_2^{n+1,n-1} = E_1^{n,n} = 0 \), one has

\[E_3^{n-1,n} = H \left(E_2^{n-3,n+1} \to E_2^{n-1,n} \to E_2^{n+1,n-1} \right) = \]

\[E_2^{n-1,n} = H \left(E_1^{n-2,n} \to E_1^{n-1,n} \to E_1^{n,n} \right) = E_{\infty}^{n-1,n} = 0. \]

Hence, the homomorphism

\[E_1^{n-2,n} \to E_1^{n-1,n} \]

is a surjection.

Applying \(E_2^{n-4,n+1} = E_2^{n-1,n} = 0 \), one has

\[E_3^{n-2,n} = H \left(E_2^{n-4,n+1} \to E_2^{n-2,n} \to E_2^{n,n-1} \right) = \]
\[E_2^{n-2,n} = H\left(E_1^{n-3,n} \to E_1^{n-2,n} \to E_1^{n-1,n} \right) = E_\infty^{n-2,n} = 0. \]

Moreover, since
\[E_2^{n-2,n} = H\left(\bigoplus_{|I|=n-2} H^n(\text{Spec } A[\prod_{i \in I} f_i]), \mathcal{F}) \to \bigoplus_{|I|=n} H^n(\text{Spec } A[\prod_{i \in I} f_i]), \mathcal{F}) \right) = 0 \]
and the homomorphism
\[\bigoplus_{|I|=n-1} \Gamma_* H^n(\text{Spec } A[\prod_{i \in I} f_i]), \mathcal{F}) \to \bigoplus_{|I|=n-1} \Gamma_* H^n(\text{Spec } A[\prod_{i \in I} f_i]), \mathcal{F}) \]
is surjective and a functor \(\Gamma_* \) is exact, it implies that
\[\bigoplus_{|I|=n-1} \Gamma_* H^n(\text{Spec } A[\prod_{i \in I} f_i]), \mathcal{F}) \to \bigoplus_{|I|=n} \Gamma_* H^n(\text{Spec } A[\prod_{i \in I} f_i]), \mathcal{F}) \]
is a zero map.

On the other hand,
\[\bigoplus_{|I|=n-1} \Gamma_* H^n(\text{Spec } A[\prod_{i \in I} f_i]), \mathcal{F}) \to \bigoplus_{|I|=n} \Gamma_* H^n(\text{Spec } A[\prod_{i \in I} f_i]), \mathcal{F}) \]
is a surjection. Thus one concludes that
\[\Gamma_* H^n(\text{Spec } A[\prod_{i=1}^n f_i], \mathcal{F}) = \bigoplus_{|I|=n} \Gamma_* H^n(\text{Spec } A[\prod_{i \in I} f_i]), \mathcal{F}) = 0. \]

Theorem 5 For \(0 \leq k \leq n \) the images of
\[\text{CH}^d(\text{Spec } A)[\prod_{i=1}^k f_i]) \to \Gamma_* H^{2d}(\text{Spec } A[\prod_{i=1}^k f_i]) \]
generate the targets. In particular, the image of
\[\text{CH}^d(\text{Spec } A) \to \Gamma_* H^{2d}(\text{Spec } A) \]
generates the target.

Proof. One continues to proceed by induction argument: \(H^n_{V(f_i)} (\text{Spec } A, \mathcal{F}) \to H^n (\text{Spec } A, \mathcal{F}) \to H^n (\text{Spec } A[\prod_{i=1}^k f_i], \mathcal{F}) \)
\[\ldots \]
H^n_{V(f_n)} (\text{Spec} \ A[\frac{1}{t_1}, \ldots, \frac{1}{t_{n-1}}], \mathcal{F}) \rightarrow H^n (\text{Spec} \ A[\frac{1}{t_1}, \ldots, \frac{1}{t_{n-1}}], \mathcal{F}) \rightarrow H^n (\text{Spec} \ A[\frac{1}{t_1}, \ldots, \frac{1}{t_n}], \mathcal{F})

One has the following commutative diagram, whose vertical sequences are exact:

\[
\begin{array}{ccc}
\text{CH}^{d-1}(V(f_k)) & \rightarrow & \Gamma_s H^{2d-2}(V(f_k))(d-1) \\
\downarrow & & \downarrow \\
\text{CH}^d(\text{Spec} \ A[\frac{1}{t_1}, \ldots, \frac{1}{t_{k-1}}]) & \rightarrow & \Gamma_s H^{2d}(\text{Spec} \ A[\frac{1}{t_1}, \ldots, \frac{1}{t_{k-1}}])(d) \\
\downarrow & & \downarrow \\
\text{CH}^d(\text{Spec} \ A[\frac{1}{t_1}, \ldots, \frac{1}{t_k}]) & \rightarrow & \Gamma_s H^{2d}(\text{Spec} \ A[\frac{1}{t_1}, \ldots, \frac{1}{t_k}])(d) \\
\downarrow & & \downarrow \\
0 & & 0
\end{array}
\]

\[\blacksquare\]

In Case of Singular Varieties

Uwe Jannsen proved that the Hodge conjecture and the Tate conjecture for singular varieties are deduced by the original conjectures. For the readers convenience we explain it. For a smooth variety X of dimension d one has the Poincaré duality $H_{2d}(X, i) \cong H^{2d-2i}(X, d-i)$. There is no such duality in general for non smooth varieties. Fundamental classes induce a cycle map: $\text{cl}_i : Z_i(X) \rightarrow H_{2i}(X, i)$, which factors through the canonical cycle map that Fulton defines $\text{CH}_i(X) \rightarrow H_{2i}(X, i)$. The Hodge conjecture for singular varieties says that for all $i \geq 0$ the map

\[\text{cl}_i \otimes \mathbb{Q} : Z_i(X) \otimes \mathbb{Q} \rightarrow \Gamma_s H_{2i}(X, \mathbb{Q})(i) = (2\pi i)^{-i} W_{-2i} H_{2i}(X, \mathbb{Q}) \cap F^{-i} H_{2i}(X, \mathbb{C})\]

is surjective.

Theorem 6 The Hodge conjecture is true for singular varieties.

Proof. By Chow’s lemma and Hironaka’s resolution of singularities for a singular non complete variety X there exist $\pi : X' \rightarrow X$ a projective and surjective morphism with X' quasi-projective and smooth and $\alpha : X' \rightarrow X''$ an open immersion with X'' projective and smooth forming a diagram of varieties

\[
\begin{array}{ccc}
X' & \xrightarrow{\alpha} & X'' \\
\downarrow & & \downarrow \\
X & & \\
\end{array}
\]

\[
\begin{array}{ccc}
Z_i(X'') \otimes F & \xrightarrow{\text{cl}_i} & Z_i(X') \otimes F \\
\downarrow & & \downarrow \\
\Gamma H_{2i}(X'', i) & \xrightarrow{\Gamma \alpha_*} & \Gamma W_0 H_{2i}(X', i) \\
\end{array}
\]

\[\blacksquare\]
Since $H_2(X', i)$ is a semi-simple object, $W_0H_2(X, i)$ is a direct factor of $H_2(X', i)$ via $\pi_* \circ \alpha^*$ and so $\Gamma\pi_* \circ \Gamma\alpha^*$ is surjective. Thus $Z_i(X) \otimes F \to \Gamma W_0H_2(X, i)$ is surjective.

Appendix

Theorem 7 Let $f_0 : X_0 \to Y_0$ a projective morphism, $\ell \in H^2(X_0, Q\ell(1))$ the first Chern class of an f_0-ample invertible sheaf and F_0 a perverse sheaf over X_0 for $i \geq 0$. The following map is an isomorphism

$$\ell^i : \mathcal{H}_{c-2} f_* F_0 \cong \mathcal{H}_c f_* F_0(i)$$

Lemma 8 It suffices to prove the Hodge conjecture in case of $i = 2d = \dim X$.

Proof. By the strong Lefschetz theorem it reduces to the case $i = 2p > 2d$. Let Y be a general hyperplane section of X. By the weak Lefschetz one has an exact sequence $H^{i-2}(Y, \mathcal{F}) \to H^i(X, \mathcal{F}) \to H^i(X - Y, \mathcal{F}) = 0$. The following commutative diagram completes the proof:

\[
\begin{array}{ccc}
\text{CH}^{p-1}(Y) & \longrightarrow & \Gamma_* H^{2p-2}(Y)(p-1) \\
\downarrow & & \downarrow \\
\text{CH}^p(X) & \longrightarrow & \Gamma_* H^{2p}(X)(p) \\
\downarrow & & \downarrow \\
\text{CH}^p(X - Y) & \longrightarrow & \Gamma_* H^{2p}(X - Y)(p) \\
\downarrow & & \downarrow \\
0 & & 0 \\
\end{array}
\]

Theorem 9 Let $f : X \to Y$ be an affine morphism. The functor

$$Rf_* : D^b_c(X, \overline{\mathbb{Q}}_\ell) \to D^b_c(Y, \overline{\mathbb{Q}}_\ell)$$

is right t-exact. In particular, Let k be an algebraically closed field and \mathcal{F} an etale sheaf on X. $H^i(X, \mathcal{F}) = 0$ for $i > \dim X$.

References

[Bour] Bourbaki N., Éléments de mathématique Algèbre commutative Ch.5,Ch.6, Fasc.XXX Hermann 1964, pp.207.

